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The relationship of the Ito-Stratonovich stochastic calculus to studies of weakly 
colored noise is explained. A functional calculus approach is used to obtain an 
effective Fokker-Planck equation for the weakly colored noise regime. In a 
smooth limit, this representation produces the Stratonovich version of the Ito- 
Stratonovich calculus for white noise. It also provides an approach to steady 
state behavior for strongly colored noise. Numerical simulation algorithms are 
explored, and a novel suggestion is made for efficient and accurate simulation of 
white noise equations. 
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1. I N T R O D U C T I O N  

In recent years the domain  of  application for stochastic calculus in physics 
has grown considerably. Initially confined to the description of Borwnian 
mot ion  and diffusion, stochastic processes are now considered an integral 
part  of a complete description in such diverse areas as hydrodynamics ,  
spectroscopy, cosmology,  supersymmetry,  and quan tum optics, to name 
just a few specific cases. As stochastic thinking has entered each new arena, 
the technical details associated with the I to and Stratonovich versions of 
the stochastic integral have sometimes given rise to periods of debate and 
confusion. This feature regarding the applicability of  the stochastic calculus 
has been accentuated by the rapidly increasing use of numerical simulation 
as a tool for the study of  stochastic processes. 

The difficulties that  arise are a consequence of a mathematical  
idealization of physical reality: the not ion of  "white" noise, or in other  
words, the Markov  process. A mathematical ly  precise not ion of  white noise 
arose in Wiener 's theory ~l) of  Brownian motion,  but  the technical dif- 
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ficulties were already foreshadowed in Einstein's earlier work (2) on the 
same subject. Both of these approaches are directly concerned with the 
process of diffusion. A dynamical underpinning for diffusion was initiated 
by Langevin (3) and greatly elaborated by Uhlenbeck and Ornstein. (4) This 
approach eliminated the technical difficulties at the diffusion level of 
description, but replaced them by identical difficulties at the new level of 
description. It was Doob (5~ who confronted this problem first, and the 
resolution for white noise was given its rigorous mathematical formulation, 
the Ito calculus, by Ito (6) shortly thereafter. While this resolved the 
technical difficulties with white noise descriptions, it introduced an 
unfamiliar and new type of integration, the stochastic integral. This 
stochastic integral does not obey the ordinary rules for integrals, and this is 
the feature of the stochastic calculus that still generates confusion. 

An alternative attitude regarding this situation was initiated by 
Stratonovich. (7) Rather than focusing exclusively on white noise, he 
suggested that stochastic processes in physics are really non-Markovian; 
that is, they involve "colored" noise. One then studies "weakly colored" 
noise and in the end looks at the limit of white noise. This approach leads 
to an alternative stochastic calculus, the Stratonovich version of the Ito 
calculus. Its advantage is that the Stratonovich stochastic integral obeys all 
of the rules of the ordinary integral. Its disadvantage appears to be of a 
purely mathematical character and has to do with rigorous justification of 
its rules. 

In this paper I will elaborate on the Stratonovich approach to 
stochastic calculus in physics. A functional calculus approach (a) will be 
introduced which gives rise to an effective Fokker-Planck equation for 
weakly colored noise, thereby permitting a potentially rigorous account of 
the white noise limit. Two additional advantages accrue: (1)steady state 
behavior for strongly colored noise is also treated; and (2)a greatly 
improved algorithm for numerical simulations of stochastic equations is 
justified. These features, together with the new justification of the 
Stratonovich stochastic calculus, greatly support the functional calculus 
approach to stochastic calculus in physics. 

Section 2 provides an account of the Einstein-Wiener theory of dif- 
fusion and its inherent difficulty. This is followed by Section 3 on the 
Langevin equation and the Doob-Ito resolution. In Section4, the 
functional calculus is used to derive an effective Fokker-Ptanck equation 
for weakly colored noise, and the Stratonovich version of the stochastic 
calculus is justified. In Section 5, a strongly colored noise problem is 
treated. Section 6 is dedicated to the problem of numerical simulation of 
stochastic equations. 

About ten years ago when I first wrote about the Ito-Stratonovich 
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dilemma. (9) Mark Kac chided me for doing so. He said that all it did was 
make my mentor, and his friend, George Uhlenbeck, irritable. It was better 
not to even mention Doob or Ito, and to recognize that as physicists, we 
did not need to be concerned with the mathematical technicalities, since 
they in no way affected the outcome of our computations of physically 
measurable results. Since that time, the greatly increased interest by 
physicists in colored noise problems and in their numerical simulations 
more than justifies a return to this issue. Remarkably, Mark Kac's interest 
would have been on the physical side of the question rather than on the 
purely mathematical. In mathematical physics, he seemed to always pursue 
clarity, simplicity, and computability. I hope I have succeeded in adhering 
to these goals here. 

2. D IFFUSION A LA EINSTEIN A N D  WIENER 

We may think of diffusion in three-dimensional space as arising from 
the stochastic differential equation 

d 
~ r ( t ) = ~ ( t )  (1) 

in which r(t) is the position at time t and ~(t) is a stationary, Gaussian, 
Markov fluctuating "force" satisfying 

( ] ' ( t ) )  = o (2) 

(7 , ( t )  ~ ( s )  ) = 2D 6(t - s) 6 U (3) 

in which D is the diffusion constant. ]'(t) is called "white" noise because of 
the Dirac delta function in the correlation formula (3). It is straightforward 
to prove (9) that the conditional probability distribution engendered by 
Eqs. (1)-(3) is 

[ dr2-rll2 ] 
P 2 ( r l t ~ ; r 2 t 2 ) = [ 4 ~ D ( t 2 - - t l ) ] - 3 / 2 e x p  4 D ( t 2 _ t l ) j  (4) 

This probability density implies that if a diffusing particle is at r 1 at time tl, 
then the probability at time t 2 > t I that its x component is between x2 and 
x2 + dx2, its y component is between Y2 and Y2 + dy2, and its z component 
is between z2 and z 2 -I-dz 2 is given by P2(rl tl; r2t2)dx 2 dy 2 dz  2. 

Einstein (2~ noted in 1906 that the average velocity of change for a 
component of r is determined by (4) to be 

( [ri(s + t) - ri(s)] [ri(s + t) - re(S)] )1/2 (2D)1/2 
, (5) 

t t ~ O  t l /2  
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He noted that this expression: 

becomes infinitely great for an indefinitely small interval of time t; which is 
evidently impossible, since in that case each suspended particle would move 
with an infinitely great instantaneous velocity. The reason is that we have 
implicitly assumed in our development that the events during the time t are to 
be looked upon as phenomena independent of the events in the time 
immediately preceding. But this assumption becomes harder to justify the 
smaller the time t is chosen. 

Wiener tj~ also realized this difficulty and even proved that r(t) is 
nowhere differentiable. This, of course, renders the meaning of (1) doubtful. 

3. THE LANGEVIN EQUATION A LA DOOB A N D  ITO 

The Langevin equation (3'4"9) describes the time evolution of a Brow- 
nian particle's velocity rather than directly describing the position. The 
equation is written 

d 
M ~  u(t) = -~u(t)  + F(t) (6) 

in which M is the Brownian particle mass, u(t) is its velocity, e is the dam- 
ping parameter, and ~(t) is a stationary, Gaussian, Markov force with 
stochastic properties 

( F ( t ) )  = 0  (7) 

(~'i(t) Fj(s) ) = 2k8 T~6(t-- s) 3ij (8) 

For a Brownian sphere of radius R in a fluid of viscosity r/ we have the 
Stokes formula: 7 = 6~cqR. The Dirac delta function in (8) means that the 
stochastic force is white noise. In this context, we get the position by 
integration: 

r ( t ) = r ( 0 ) +  dsu(s) 

= r(0) + (M/~){ 1 - expl- - (~/M)t] } u(0) 

f fo + (I/M) ds ds 'exp[-(e/M)(s-s ' )]  F(s') (9) 

If we use ( " . )  to denote averaging over ~ and {...} to denote averaging 
over the initial velocity u(0) with respect to a Maxwell distribution, then 
we obtain 

{(ri(t) rj(t))}=2 k~T 1 - - - + - - e x p  - t 6u+ri(0) rj(0 ) (10) 
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This expression has quite a different t behavior  for large t ( ~  M/a) and for 
small t (~M/~) ,  In  the former  case it goes like t, whereas in the lat ter  case 
it goes like t 2. Consequent ly ,  the analogue  to (5) becomes 

( Eri(s + t) - r ,(s)] [ri(s + t) - ri(s)] )1/2 kBT 
(11) 

t~o ' m 

which it perfectly well behaved.  Thus,  r( t)  is now differentiable. 
We can go further  and note f rom (9) that  (1) can be replaced by 

d 
d t r ( t )=u( t )  (12) 

where u(t) has the following stochastic propert ies  derivable f rom (6)-(8):  

{(u(t))} =o  (13) 

{(ui(t)  u j ( t ) ) } = ( k ~ T / M ) e x p [ - ( ~ / M ) t t - s ] ] 6  v (14) 

Equa t ion  (12) is driven by "colored"  noise, because the driving "force" u(t) 
does not  have a Dirac  delta function correlat ion,  but  instead possesses a 
n o n - M a r k o v i a n  m e m o r y  in a d a m p e d  exponent ia l  corre la t ion with 
correlat ion t ime M/a. 

It appears  as though we have resolved the Eins te in-Wiener  d i lemma 
with Langevin 's  equation.  Nevertheless,  addi t ional  compu ta t i on  shows that  

{ ( [ u , ( s + t ) - u , ( s ) ] [ u , ( s + t ) - u i ( s ) ] ) }  1/2 k ~ r ~  1 
, (15)  t ,~o M 2 tl/2 

which clearly diverges. Thus,  while the velocity is okay  [in the sense of 
(11) ], the accelerat ion does not  exist! We have s imply removed the original 
p rob lem of the differentiability of r(t)  to the nondifferentiabil i ty of u(t). 
This fact p r o m p t e d  D o o b  (5) to initiate a re formula t ion  of stochastic dif- 
ferential equations.  In his l andmark  pape r  of 1942 he said: 

The purpose of the present paper is to apply the methods and results of modern 
probability theory to the analysis of the Ornstein-Uhlenbeck distribution, its 
properties and its derivation, It will be seen that the use of rigorous methods 
actually simplifies some of the formal work, besides clarifying the hypotheses. A 
stochastic differential equation will be introduced in a rigorous way to give a 
precise meaning to the Langevin differential equation for the velocity function 
(d/dt)x(s). This will avoid the usual embarassing situation in which the 
Langevin equation, involving the second derivative of x(s) is used to find a 
solution x(s) not having a second derivative. 

I think this pinpoints  the source of Uhlenbeck ' s  irritability! 
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With this lead, Ito (6) ultimately formulated the Ito stochastic differen- 
tial equation, with which Langevin's equation takes the form 

M du(t) = -eu( t )  dt + M dB(t) (16) 

A key feature of this equation is that MdB(t) cannot be replaced by 
F(t) dt. Said another way, the mean-square of dl](t) is proportional to dt 
[not (dt) 2] rather than dl](t). It is this novel dependence on dt in 
stochastic equations that leads to unusual dependence on step size in 
numerical algorithms for noise problems, as we will see later. 

4. F U N C T I O N A L  C A L C U L U S  A P P R O A C H  

In this section, it is shown how functional calculus may be used to 
analyze stochastic differential equations. This technique is indifferent to 
whether white noise or colored noise is involved, at least up to a certain 
stage of representation. In the white noise context, the Langevin equation 
provides one representation of the stochastic process, whereas an 
equivalent representation of all statistical information about the process is 
also provided by the Fokker-Planck equation3 l~ Until recently, it was 
understood that a Fokker-Planck equation exists for Markov processes 
only. However, for weakly colored noise (non-Markovian) it is possible to 
derive (8) an effective Fokker-Planck equation as well. This does not trans- 
form a non-Markovian process into a Markovian one. Instead, it says that 
there exists a Markov process (described by the effective Fokker-Planck 
equation) with statistical properties as close as one wants to those of the 
weakly non-Markovian process. Moreover, in certain special situations, 
such as steady states, there is even an effective Fokker-Planck equation for 
strongly colored noise, as is discussed in Section 5. These facts are most 
transparently exhibited using the functional calculus. 

For simplicity of presentation, consider the stochastic differential 
equation in only one variable, x: 

d 
- x =  W ( x )  + g (x )  7 ( t )  (17) 
dt 

in which W(x) and g(x) may be nonlinear functions of x. When g(x)= 1, 
the process is "additive"; otherwise, it is "multiplicative. ''(9) The noise 
function ~(t) is assumed to be Gaussian and may be either white or 
colored. If we write 

<jT(t) y (s )  ) = C( t  - s) (18) 
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then the special choice 

C~(t - s) = (D/r) exp( - [t - s[/z) (19) 

permits us to cover both cases, since 

lim C~( t  - s )  = 2 D  & ( t - - s )  (20) 
" c ~ O  

The Gaussian character of jr(t) is expressed in the functional calculus by a 
probability distribution functional 

(21) 

in which K is the inverse of the y correlation function C, and N is the nor- 
malization expressed by a Feynman-Ka~Wiener  path integral over jT: 

1 K(s - s')] N 1 - - f f ~ ? e x p [ - ~ f d s f d s ' y ~ ( s ) ) 7 ( s ' )  (22) 

The Feynman-Kac-Wiener path integral is also used to define the 
probability distribution functional for x(t), the solution to (17). This quan- 
tity is 

P(y, t) = f f  ~ y f [ ? ]  a ( y -  x(t)) (23) 

Elsewhere, (8) I have elaborated on this theme and have shown that P(y, t) 
satisfies the equation 

3 c~ 0 3 
8~ P =  - ~y [ W ( y ) P ] + -.~-fy g ( y ) --~y g ( y ) 

x exp{f~ds[W'(x(s))-g'(x(S))w(x(s))]}g(x(s)) (24) 

in which W' and g' denote the derivatives with respect to x of W and g, 
respectively. This is an exact equation, which has been given a particularly 
useful form. It is not a Fokker-Planck equation because something more 
complicated than just P(y, t) appears in the "diffusion" term (the second 
piece of the right-hand side). However, when C ( t - s )  corresponds to a 
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white noise correlation, such as in (20), Eq. (24) becomes the bona fide 
Fokker-Planck equation 

0 
05 e =  - Ty 

0 
Oy 

0 g(y) ~_~ g(y)p 
[ W(y)P] + D-~y 

- - - -  { [ W(y) + Dg'(y) g(y)]P} + D ~ g2(y)p (25) 

Note that these two equivalent forms of the equation are only identical for 
additive noise. 

In the weakly colored noise regime, an effective Fokker-Planck 
equation also exists. To be explicit, consider the correlation in (19). The 
diffusion term in (24) can be treated as follows: 

odS' D__ exp ( - - -  

x exp 

t ) s ' )  fI # f p [ f ]  6(y-  x(t)) 

= D dO ~-o ff ~7P[7] 6(y-  x(s)) 

{;J f J} xexp ds W'(x(s)) -g'(x(s))  W(x(s)) 
-~o g(x(s)) 

(26) 

where the change of integration from s' to O=(t-s ' ) /~ has been 
introduced. Up to this point the expression is still exact. "Weakly colored 
noise" means that it is nearly white, i.e., r ~ 0 .  I have argued (8) that: 
uniformly in y, ~ may be taken sufficiently small such that the following 
approximation is justified: 

fo dO e o exp ds W'(x(s)) W(x(s)) 
-to g(x(s)) 

g(x(t)) 

(27) 

When this is inserted into the right-hand side of (26), where the 6(y - x(t)) 
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factor can work, and then back into (24), the effective Fokker-Planck 
equation results: 

0-SP= [W(y)P] +D y g(y) g(y) 

t 

{ [ ]}' f@ g'(Y) W(y) P (28) + D g2(y) 1 - r  W'(y)- g--~ 

Validity of the last step in (27) requires 

g'(Y) W(y)] 1 - r [ W ' ( y ) -  g-~y) > 0 for all y (29) 

For explicit choices of W and g, this requirement imposes particular con- 
straints on r. The argument outlined above would benefit from rigorous 
accessments of the error accrued in time t from use of Eq. (28) to describe 
the exact behavior in (24). 

As long as T > 0, no special stochastic calculus is required. It is clear 
from (25) and (28) that as T--* 0 the effective Fokker-Planck equation goes 
over smoothly into the white noise limit. This limit is precisely the 
Stratonovich version of the Ito calculus. (121 I think that if this approach 
could be made as mathematically rigorous as one would like, then it would 
simultaneously provide a rigorous underpinning for the Stratonovich ver- 
sion of the Ito calculus, and extend stochastic analysis into the weakly non- 
Markovian regime. The first benefit would overcome the difficulty with the 
Stratonovich version of the stochastic calculus, which is that it does not 
generate a martingale, (12) whereas the second benefit corresponds more 
closely with real physics, as Einstein already noted. 

5. S T R O N G L Y  C O L O R E D  NOISE AT  S T E A D Y  S T A T E S  

At steady states, it is possible to approximate the exact expression (24) 
in a way different from the way derived for weakly colored noise. In fact, 
this steady state approximation appears to work for strongly colored noise 
as well. By "strongly colored noise" we mean that the z in (19) is large, and 
our statement is independent of the magnitude of D. For the 
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approximation described below, we will also surely need to keep D 
relatively small. 

The approximation is to replace the x(s) in the exponential function in 
(24) by its steady state value, denoted by Xs: 

 30t 

This is reasonable only if D is not too big. Substituting (30) into (26)-(27) 
yields the steady-state effective Fokker-Planck equation 

-~P= ---Oy [W(y)P]+D 1 - r  W'(xs)-~g'(x') W(xs) 

0 • g(y)  g(y)e (31) 

which may be viewed as a white noise consequence with renormalized dif- 
fusion constant 

D'=D{1-r[W' (x , )  g'(xs) 1 

This approximation was originally proposed by Hanggi et al. (13) We see 
here how easily it sits in the functional calculus representation. 

Fox and Roy (14) recently tested this approximation by using it to fit 
measurements of steady-state dye laser intensity fluctuations obtained by 
Lett et al. (~5) The fits of formulas derived from the approximate equation 
(31), as applied to a fluctuating laser intensity equation, were remarkably 
good, and placed ~ in the strongly colored noise regime. Fitting without 
using the renormalization diffusion constant D' could not come close to the 
high quality of the fit with it. 

6. N U M E R I C A L  S I M U L A T I O N S  

Algorithms for numerical simulation of stochastic differential 
equations exist for both white noise and colored noise. For additive white 
noise problems, these algorithms are well tested for accuracy. (16'~7) For 
additive colored noise problems, straightforward extensions exist. (11'~8) For 
the multiplicative noise case, however, the results have not been tested for 
accuracy until recently. Fox and Roy (19) have investigated the Kubo 
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oscillator problem in which 
equation 

1155 

the complex amplitude a(t) satisfies the 

in which Co(t) is a real, stochastic frequency with zero mean. We take it as 
satisfying the equation 

d 
Co(t) = -2CO(t) + 2~'(t) (34) 

dt 

in which ~(t) is white noise with zero mean and covariance 

(~'(t) ~(s)> = Q6(t-s)  

This makes Co(t) colored noise with covariance 

(CO(t) Co(s) ) = �89 

In the limit 2 ~ 0% CO(t) becomes white noise. 
Equation (33) possesses an associated "Fokker-Planck" equation, 

which may be solved in closed form, even for colored noise. If we write 
a=re i~, we find that r is a constant for the dynamics in (33), but ~b is 
described by the probability distribution equation 

aS e(~, t) = -~Oo ~ e(,~, t) (37) 

in which D(t) is defined by 

D(t)=�89 - e  -~') (38) 

If D(t) were a constant (Q/2), then Eq. (37) would indeed be a bona fide 
Fokker-Planck equation for a Markov process. As it is, however, it is an 
exact equation for the probability distribution P(~b, t) in the colored noise 
regime, but is no longer truly a Fokker-Planck equation. Its solution is 
just 

1 ~  exp[im(c~_q~o)_imcoot_m2fodSD(s) ] (39) e(~, t) = ~ . . . .  

from which all the moments of ~b may be derived in close form. We have 
compared these exact expressions for the first three moments of ~b with the 
results of numerical simulations. 

(35) 

(36) 

d 
dt a(t) = iEcoo + Co(t)] a(t) (33) 
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When we use an algorithm for the coupled system of equations (33) 
and (34) in the colored noise regime, the additive white noise in (34) is 
treated by the Box-Mueller algorithm (2~ and Eq. (33) is treated by a stan- 
dard, nonstochastic algorithm. On the other hand, for the white noise limit 
[2 ~ oe in (34)], Eq. (33) may be treated directly with a multiplicative 
white noise algorithm. (~1'18) What we find is that our first approach works 
extremely well, and the weakly colored noise regime (2 = 10) reproduces 
results for the white noise limit very well. The second approach, the direct 
one, also works well for ~b, but creates a spurious decay of r, a supposed 
constant. This artifact can be traced to the dependence on step size of 
stochastic terms in the algorithms. If step size is denoted by A, then a white 
noise factor goes like x/A, whereas an ordinary term will involve A. For 
small A, ,,/A > A, and thus larger errors are created in the direct algorithm 
than in the weakly colored, coupled equation algorithm if A is the same for 
both. 

Our suggestion is to use the coupled equation algorithm for weakly 
colored noise instead of the direct algorithm for white noise. It is surprising 
that even when 2 is not very big (2 ~ 10), the weakly colored noise is effec- 
tively white. This adds weight to the view expressed earlier in this paper 
that physical reality calls for weakly colored noise rather than for white 
noise. Here, it greatly simplifies the numerical algorithm and improves 
accuracy. Finally, using the functional calculus, it appears to be possible to 
establish a mathematically rigorous basis for the Stratonovich stochastic 
calculus in the weakly colored noise regime. 

A C K N O W L E D G M E N T  

This work was partially supported by National Science Foundation 
grant PHY-8603729. 

REFERENCES 

1. N. Wiener, J. Math. Phys. 2:132 (1923); Acta Math. 55:117 (1930). 
2. A. Einstein, Ann. Phys. (Lpz.) 19:371 (1906); Investigations on the Theory of the Brownian 

Movement (Dover, New York, 1956). 
3. P. Langevin, C. R. Acad. Sei. Paris 146:530 (1903). 
4. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36:823 (1930). 
5. J. L. Doob, Ann. Math. 43:351 (1942). 
6. K. Ito, Proc. Imp. Acad. Tokyo 20:519 (1944); Mem. Am. Math. Soc. No. 4 (1951). 
7. R. L. Stratonovich, SIAM J. Control 4:362 (1966). 
8. R. F. Fox, Phys. Rev. A 33:467 (1986); Phys. Rev. A 34:4525 (1986). 
9. R. F. Fox, Phys. Rep. 48:179 (1978). 

10. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural 
Sciences (Springer-Verlag, Berlin, 1983). 



Stochastic Calculus in Physics 1157 

11. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984). 
12. L. Arnold, Stochastic Differential Equations (Wiley-Interscience, New York, 1974). 
13. P. Hanggi, T. J. Mroczkowski, F. Moss, and P. V. E. McClintock, Phys. Rev. A 32:695 

(1985). 
14. R. F. Fox and R. Roy, Phys. Rev. A 35:1838 (1987). 
15. P. Lett, R. Short, and L. Mandel, Phys. Rev. Left. 52:34 (1984). 
16. E. Helfand, Bell Syst. Tech. J. 58:2289 (1979). 
17. P. L. Ermak and H. Buckholz, J. Comput. Phys. 35:169 (1980). 
18. J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton, Phys. Rev. A 26:1589 (1982). 
19. R. F. Fox and R. Roy, Tests of numerical simulation algorithms for the Kubo oscillator, 

J. Stat. Phys., to appear. 
20. D. E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading, 

Massachusetts, 1969). 

822/46/5-6-24 


